

TACOSOL LOAD MEGA

SPEICHERLADESTATION

Anschlussfertige Speicherladestation mit Hocheffizienzpumpen für die effiziente Wärmeübertragung von Solarenergie in einen oder zwei Pufferspeicher

BESCHREIBUNG

Die Speicherladestation TacoSol Load Mega dient der zonenweisen Ladung eines Pufferspeichers oder der Beladung zweier Pufferspeicher über eine Solarthermie-Anlage entsprechend der jeweils zur Verfügung stehenden Vorlauftemperatur.

EINBAUPOSITION

Die Station ist komplett vormontiert, steckerfertig und zur direkten Montage am Speicher oder an der Wand vorgesehen. Lediglich die Speicherund Kollektorfühler sowie die Entlüfter-Sicherheitseinheit müssen noch montiert werden.

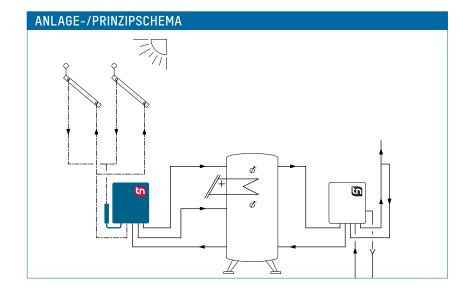
FUNKTIONSWEISE

Die TacoSol Load Mega ist eine kompakte, mit einer EPP-Designisolierung ausgestattete Ladestation zur Beladung eines oder zweier Pufferspeicher durch eine Solaranlage.

Die gewonnene Solarenergie wird über einen hocheffizienten Edelstahlplattenwärmetauscher an den/die Pufferspeicher weitergegeben. Hierbei übernimmt die integrierte Regelung die Aufgabe, über die Drehzahlregelung der Primär- wie auch der Sekundärpumpe die optimalen Bedingungen zu schaffen, um so den grösstmöglichen Solarertrag erzielen zu können.

VORTEILE

- Maximaler Solarertrag vom Dach in den Pufferspeicher durch hochwertigen Edelstahlplattenwärmetauscher
- Zonenweise Ladung eines Pufferspeichers oder Beladung zweier Pufferspeicher
- Drehzahlregelung der Primär- wie auch der Sekundärpumpe für die optimale Temperaturdifferenz
- Stabile Schichtung im Pufferspeicher
- TacoControl Tronic zur Erfassung der Primär-Rücklauftemperatur und des Primär-Volumenstromes
- Maximale Energieausnutzung z.B. bei Frischwarmwassererzeugung mit den Frischwarmwasserstationen TacoTherm Fresh


Für die TacoSol Load Mega L mit Umschaltventil werden die hierfür notwendigen Parameter unter anderem über den TacoControl Tronic ermittelt. Der Controller steuert das Dreiwegumschaltventil an, um entweder Speichervorlauf I oder II zu bedienen. So kann eine optimale Beladung des Speichers oder der Speicher erreicht werden.

GEBÄUDEKATEGORIEN

- Einfamilienhäuser, Mehrfamilienhäuser
- Hotels und Restaurants
- Schulhäuser und Turnhallen / Sportanlagen
- Gewerbe- und Industriebauten, industrielle Anlagen

ERGÄNZUNGSMÖGLICHKEIT

Die ideale Ergänzung zum innovativen Zonen-Speicherladesystem TacoSol Load Mega stellen die Frischwarmwasserstationen TacoTherm Fresh dar. Sie dienen der hygienischen Frischwarmwasserbereitung.

TACOSOL LOAD MEGA | SPEICHERLADESTATION

AUSSCHREIBUNGSTEXT

Siehe www.taconova.com

TECHNISCHE DATEN

Allgemein

- Controller mit Display
- Gewicht ohne Wasserinhalt: ca. 12 kg
- Gesamtabmessungen (inkl. Haube):
 B 698.5 mm × H 636 mm × T 181 mm

Material

- Design-Haube aus EPP
- Pumpen: Grauguss
- Armaturengehäuse: Messing
- Rohre: Edelstahl 1.4404
- Plattenwärmetauscher: Edelstahl
- Platten und Stutzen: Edelstahl 1.4401
- Lot: 99,99 % Kupfer
- Dichtungen: AFM34 (flachdichtend)

Primärseitig

- Max. Betriebstemperatur T_{B max}
 - Vorlauf: 110 °C, kurzzeitig (2h): 140 °C
 - Rücklauf: 95 °C
- Max. Betriebsdruck P_{B max}: 6 bar
- Primärpumpe:
- WILO Yonos Para ST 15/7.5
- Entlüftergruppe mit integrierter Absperrung, Füll-, Spül- und Entleerungsvorrichtung
- Sicherheitsventil 6 bar
- TacoControl Tronic Messbereich:2 40 l/min

Sekundärseitig

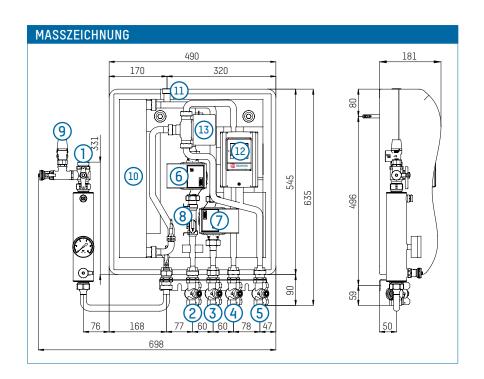
- Max. Betriebstemperatur T_{B max}: 110 °C
- Max. Betriebsdruck P_{B max}: 3 bar
- Sekundärpumpe: WILO Yonos Para ST 15/7.5
- Zonenumschaltventil

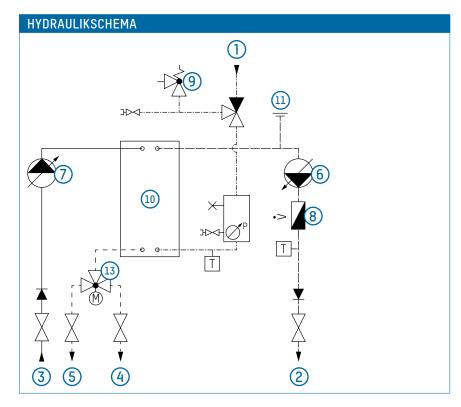
Leistungsdaten

• siehe Auslegungsdiagramm

Elektrische Anschlussdaten

- Netzspannung: 230 VAC ± 10 %
- Netzfrequenz: 50...60 Hz
- Leistungsaufnahme Station: max. 130 W
- Leistungsaufnahme Pumpe: solpump: 4-75 W
- Leistungsaufnahme Pumpe im Bereitschaftszustand: 0,8 W
- Sicherung 2 AT
- Schutzart: IP 40

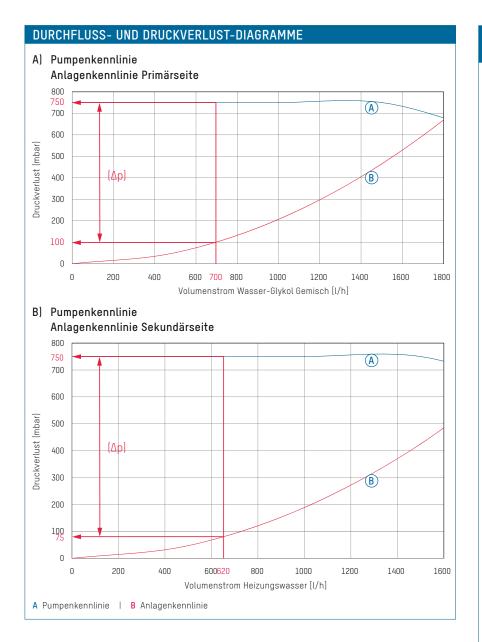

Durchflussmedien


- Heizungswasser (VDI 2035; SWKI BT 102-01; ÖNORM H 5195-1)
- Übliche Glykolmischungen bis 40%

TYPENÜBERSICHT

TacoSol Load Mega | Speicherladestation

Bestell-Nr.	Rp	Version	Ausführung
271.5512.000	³/4" IG	L	mit Umschaltventil
271.5511.000	3/4" IG		ohne Umschaltventil



- 1 Primär-Solar-Vorlauf
- 2 Primär-Solar-Rücklauf
- 3 Sekundär-Speicher-Rücklauf
- 4 Sekundär-Speicher-Vorlauf 1
- 5 Sekundär-Speicher-Vorlauf 2 (optional zu Umschaltventil)
- 6 Primär-Solarpumpe

- 7 Sekundär-Speicherladepumpe
- 8 Volumenstromsensor
- 9 Solar-Sicherheitsventil
- 10 Wärmetauscher
- 11 Anschluss Expansiongefäss
- 12 Regler
- 13 Umschaltventil (TacoSol Load Mega L)

CHARAKTERISTIK PLATTENWÄRMETAUSCHER							
GRUNDLAGEN	MITTLERE LOG TEMPDIFFERENZ [LOG DELTA T]						
Berechnungswerte 500 [W/m²]	Spez. Volumenstrom	Kollektorfläche (m²)					
LEGENDE / ERLÄUTERUNG ΔT <5K Effizienter Betrieb ΔT 5-7K Verminder Ertrag ΔT >7K Deutlich verminderter Ertrag	[l/(h*m²)]	5	10	15	20		
	10	7.6	8.4	8.5	9.5		
	25	3.6	4.3	5.5	6.0		
	35	2.8	4.2	4.5	5.0		
	50	2.2	3.4	3.7	4.0		

BEISPIEL ZUR INTERPRETATION DER DIAGRAMME

Gegeben

Kollektorfläche: 20 m²
Leistung: 12.5 kW

Mittlere log Tempdifferenz: 5.0
 Spez. Volumenstrom 35 l/h × m²

Gesucht

- Restförderhöhe Primärkreislauf
- Restförderhöhe Sekundärkreislauf

Lösungsweg

- Der Primärvolumenstrom von 700 l/h wird errechnet aus: Kollektorfläche × spezifischer Volumenstrom
- Im Diagramm A) wird beim Schnittpunkt der Anlagenkennline ein Druckverlust primär von 100 mbar abgelesen.
- Die Förderhöhe der Pumpe beträgt 750 mbar. Abzüglich des Druckverlustes ergibt sich eine Restförderhöhe der Pumpe von 650 mbar (Δp).
- Im Diagramm B) wird ein Sekundärvolumenstrom von 620 l/h abgelesen. Die Differenz der Volumenströme ergibt sich aus den unterschiedlichen Wärmekapazitäten von Heizungswasser sekundär und Ethylenglykolgemisch primär.
- Wird beim Schnittpunkt der Anlagenkennline ein Druckverlust sekundär von 75 mbar abgelesen.
- Die Förderhöhe der Pumpe beträgt 750 mbar. Abzüglich des Druckverlustes ergibt sich eine Restförderhöhe der Pumpe von 670 mbar (Ap).